How to Break Secure Boot on FPGA SoCs Through Malicious Hardware
نویسندگان
چکیده
Embedded IoT devices are often built upon large system on chip computing platforms running a significant stack of software. For certain computation-intensive operations such as signal processing or encryption and authentication of large data, chips with integrated FPGAs, FPGA SoCs, which provide high performance through configurable hardware designs, are used. In this contribution, we demonstrate how an FPGA hardware design can compromise the important secure boot process of the main software system to boot from a malicious network source instead of an authentic signed kernel image. This significant and new threat arises from the fact that the CPU and FPGA are connected to the same memory bus, so that FPGA hardware designs can interfere with secure boot routines on FPGA SoCs that are without any interruption on regular SoCs. An enabling factor is that integrated hardware designs are likely bought from external partners and there is a realistic lack of security review at the system integrators. This facilitates flaws or even unwanted functionality in such hardware designs. We perform a proof of concept on a Xilinx Zynq-7000 FPGA SoC, and the threat can be generalized to other devices. We also present as effective mitigation, an easy-to-review and re-usable wrapper module which prevents any unauthorized memory access by included hardware designs.
منابع مشابه
Secure FPGA Design by Filling Unused Spaces
Nowadays there are different kinds of attacks on Field Programmable Gate Array (FPGA). As FPGAs are used in many different applications, its security becomes an important concern, especially in Internet of Things (IoT) applications. Hardware Trojan Horse (HTH) insertion is one of the major security threats that can be implemented in unused space of the FPGA. This unused space is unavoidable to ...
متن کاملSelf authentication path insertion in FPGA-based design flow for tamper-resistant purpose
FPGA platforms have been widely used in many modern digital applications due to their low prototyping cost, short time-to-market and flexibility. Field-programmability of FPGA bitstream has made it as a flexible and easy-to-use platform. However, access to bitstream degraded the security of FPGA IPs because there is no efficient method to authenticate the originality of bitstream by the FPGA pr...
متن کاملfastboot oem vuln: Android Bootloader Vulnerabilities in Vendor Customizations
We discuss the fastboot interface of the Android bootloader, an area of fragmentation in Android devices. We then present a variety of vulnerabilities we have found across multiple Android devices. Most notable ones include Secure Boot & Device Locking bypasses in the Motorola and OnePlus 3/3T bootloaders. Another critical flaw in OnePlus 3/3T enables easy attacks by malicious chargers – the on...
متن کاملSecurity Technology for Smartphones
Service functions are implemented on smartphones by storing on them personal information, network-operator information, corporate information, and so on. Most smartphones use an open source operating system (OS), and anyone can obtain the OS source code; consequently, smartphone users are exposed to the threat of receiving fraudulent information from people with malicious intent. Aimed at count...
متن کاملThe First Thorough Side-Channel Hardware Trojan
Hardware Trojans have gained high attention in academia, industry and by government agencies. The effective detection mechanisms and countermeasures against such malicious designs are only possible when there is a deep understanding of how hardware Trojans can be built in practice. In this work, we present a mechanism which shows how easily a stealthy hardware Trojan can be inserted in a provab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017